Tensorflow позволяет сделать распознавание эмоций.
Nimish Ronge сделал неплохой пример распознавания с использованием OpenCV и Tensorflow - https://github.com/nimish1512/Emotion-recognition-and-prediction
Несмотря на то, что в требованиях есть использование Python 3.x, программа нормально работает с Python 2.7
Кроме того, nimish1512 также отдает обученную нейросеть, которую можно скачать по следующим ссылкам:
1) model_1_nimish.tflearn.data-00000-of-00001 https://drive.google.com/open?id=0B8_K9DW3E9PlV0phWlFfRGFfcEk |
2) model_1_nimish.tflearn.index https://drive.google.com/open?id=0B8_K9DW3E9PlSmJySGM2Z0lwdlU |
3) model_1_nimish.tflearn.meta https://drive.google.com/open?id=0B8_K9DW3E9Plb0ZVeHg0cEJuNlE |
Итак, работает под Ubuntu 14.04, Tensorflow 1.1., OpenCV 3.0.0:
Cначала ставим OpenCV по следующей инструкции:
Step 1:
Open up a terminal and update the apt-get package manager followed by upgrading any pre-installed packages:
1
2
|
$ sudo apt-get update
$ sudo apt-get upgrade
|
Step 2:
Now we need to install our developer tools:
1
|
$ sudo apt-get install build-essential cmake git pkg-config
|
The pkg-config is likely already installed, but be sure to include it just in case. We’ll be using git to pull down the OpenCV repositories from GitHub. The cmake package is used to configure our build.
Step 3:
OpenCV needs to be able to load various image file formats from disk, including JPEG, PNG, TIFF, etc. In order to load these image formats from disk, we’ll need our image I/O packages:
1
|
$ sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev
|
Step 4:
At this point, we have the ability to load a given image off of disk. But how do we display the actual image to our screen? The answer is the GTK development library, which the highgui module of OpenCV depends on to guild Graphical User Interfaces (GUIs):
1
|
$ sudo apt-get install libgtk2.0-dev
|
Step 5:
We can load images using OpenCV, but what about processing video streams and accessing individual frames? We’ve got that covered here:
1
|
$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
|
Step 6:
Install libraries that are used to optimize various routines inside of OpenCV:
1
|
$ sudo apt-get install libatlas-base-dev gfortran
|
Step 7:
Install pip , a Python package manager:
1
2
|
$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
|
Step 8:
Install virtualenv and virtualenvwrapper. These two packages allow us to create separate Python environments for each project we are working on. While installing virtualenv and virtualenvwrapper is not a requirement to get OpenCV 3.0 and Python 2.7+ up and running on your Ubuntu system, I highly recommend it and the rest of this tutorial will assume you have them installed!
1
2
|
$ sudo pip install virtualenv virtualenvwrapper
$ sudo rm -rf ~/.cache/pip
|
Now that we have virtualenv and virtualenvwrapper installed, we need to update our ~/.bashrc file:
1
2
3
|
# virtualenv and virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh
|
This quick update will ensure that both virtualenv and virtualenvwrapper are loaded each time you login.
To make the changes to our ~/.bashrc file take effect, you can either (1) logout and log back in, (2) close your current terminal window and open a new one, or preferably, (3) reload the contents of your ~/.bashrc file:
1
|
$ source ~/.bashrc
|
Lastly, we can create our cv virtual environment where we’ll be doing our computer vision development and OpenCV 3.0 + Python 2.7+ installation:
1
|
$ mkvirtualenv cv
|
Step 9:
As I mentioned above, this tutorial covers how to install OpenCV 3.0 and Python 2.7+ (I’ll have a OpenCV 3.0 + Python 3 tutorial available later this month), so we’ll need to install our Python 2.7 development tools:
1
|
$ sudo apt-get install python2.7-dev
|
Since OpenCV represents images as multi-dimensional NumPy arrays, we better install NumPy into our cv virtual environment:
1
|
$ pip install numpy
|
Step 10:
Our environment is now all setup — we can proceed to change to our home directory, pull down OpenCV from GitHub, and checkout the 3.0.0 version:
1
2
3
4
|
$ cd ~
$ git clone https://github.com/Itseez/opencv.git
$ cd opencv
$ git checkout 3.0.0
|
Update (3 January 2016): You can replace the 3.0.0 version with whatever the current release is (as of right now, it’s 3.1.0 ). Be sure to check OpenCV.org for information on the latest release.
As I mentioned last week, we also need the opencv_contrib repo as well. Without this repository, we won’t have access to standard keypoint detectors and local invariant descriptors (such as SIFT, SURF, etc.) that were available in the OpenCV 2.4.X version. We’ll also be missing out on some of the newer OpenCV 3.0 features like text detection in natural images:
1
2
3
4
|
$ cd ~
$ git clone https://github.com/Itseez/opencv_contrib.git
$ cd opencv_contrib
$ git checkout 3.0.0
|
Again, make sure that you checkout the same version for opencv_contrib that you did for opencv above, otherwise you could run into compilation errors.
Time to setup the build:
1
2
3
4
5
6
7
8
9
|
$ cd ~/opencv
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_C_EXAMPLES=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \
-D BUILD_EXAMPLES=ON ..
|
Update (3 January 2016): In order to build OpenCV 3.1.0 , you need to set -D INSTALL_C_EXAMPLES=OFF (rather than ON ) in the cmake command. There is a bug in the OpenCV v3.1.0 CMake build script that can cause errors if you leave this switch on. Once you set this switch to off, CMake should run without a problem.
Notice how compared to last week our CMake command is substantially less verbose and requires less manual tweaking — this is because CMake is able to better automatically tune our install parameters (at least compared to OSX).
Now we can finally compile OpenCV:
1
|
$ make -j4
|
Where you can replace the 4 with the number of available cores on your processor to speedup the compilation.
Here’s an example of OpenCV 3.0 compiling on my system:
Assuming that OpenCV compiled without error, you can now install it on your Ubuntu system:
1
2
|
$ sudo make install
$ sudo ldconfig
|
Step 11:
If you’ve reached this step without an error, OpenCV should now be installed in /usr/local/lib/python2.7/site-packages
However, our cv virtual environment is located in our home directory — thus to use OpenCV within our cv environment, we first need to sym-link OpenCV into the site-packages directory of the cv virtual environment:
1
2
|
$ cd ~/.virtualenvs/cv/lib/python2.7/site-packages/
$ ln -s /usr/local/lib/python2.7/site-packages/cv2.so cv2.so
|
Step 12:
Congratulations! You have successfully installed OpenCV 3.0 with Python 2.7+ bindings on your Ubuntu system!
To confirm your installation, simply ensure that you are in the cv virtual environment, followed by importing cv2 :
1
2
3
4
5
|
$ workon cv
$ python
>>> import cv2
>>> cv2.__version__
’3.0.0′
|
Here’s an example of demonstrating the OpenCV 3.0 and Python 2.7+ install on my own Ubuntu machine:
Step 13:
Now that OpenCV has been configured and installed, let’s build a quick Python script to detect the red game cartridge in the image named games.jpg below:
Open up your favorite editor, create a new file, name it find_game.py , and insert the following code:
# import the necessary packages import numpy as np import cv2 # load the games image image = cv2.imread("games.jpg") # find the red color game in the image upper = np.array([65, 65, 255]) lower = np.array([0, 0, 200]) mask = cv2.inRange(image, lower, upper) # find contours in the masked image and keep the largest one (_, cnts, _) = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) c = max(cnts, key=cv2.contourArea) # approximate the contour peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.05 * peri, True) # draw a green bounding box surrounding the red game cv2.drawContours(image, [approx], -1, (0, 255, 0), 4) cv2.imshow("Image", image) cv2.waitKey(0)
You’ll also need to download the games.jpg image and place it in the same directory as your find_game.py file. Once the games.jpg file has been downloaded, you can execute the script via:
1
|
$ python find_game.py
|
Assuming that you have downloaded the games.jpg image and placed it in the same directory as our find_game.py script, you should see the following output:
Notice how our script was able to successfully detect the red game cartridge in the right portion of the image, followed by drawing a green bounding box surrounding it.
Obviously this isn’t the most exciting example in the world — but it has demonstrated that we have OpenCV 3.0 with Python 2.7+ bindings up and running on our Ubuntu system!
Затем устанавливаем Tensorflow также в виртуальное окружение cv.
Устанавливаем tflean – $pip install tflearn
Клонируем творение nimish1512
git clone https://github.com/nimish1512/Emotion-recognition-and-prediction.git
Для простоты переименовываем директорию, куда клонировали программу в emotion.
В эту же директорию сохраняем обученную нейросеть, которую скачали в самом начале. Получится так:
Запускаем виртуальное окружение. В моем случае $ source ~/.virtualenvs/cv/bin/activate
Запускаем $python em_model.py
Результат налицо
немного теории:
Как обучить собственную нейросеть - https://github.com/isseu/emotion-recognition-neural-networks
Откуда взять картинки эмоций – https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
Как сконвертировать картинки из формата csv в обычные png – https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/discussion/29428
Программа на Python (автор NoBugs)
#! /usr/bin/env # -*-coding: utf-8-*- __author__ = 'fer_2013' import numpy as np import cv2 import mxnet as mx import pandas as pd import random import os curdir = os.path.abspath(os.path.dirname(__file__)) def gen_record(csvfile,channel): data = pd.read_csv(csvfile,delimiter=',',dtype='a') labels = np.array(data['emotion'],np.float) # print(labels,'\n',data['emotion']) imagebuffer = np.array(data['pixels']) images = np.array([np.fromstring(image,np.uint8,sep=' ') for image in imagebuffer]) del imagebuffer num_shape = int(np.sqrt(images.shape[-1])) images.shape = (images.shape[0],num_shape,num_shape) # img=images[0];cv2.imshow('test',img);cv2.waitKey(0);cv2.destroyAllWindow();exit() dirs = set(data['Usage']) subdirs = set(labels) class_dir = {} for dr in dirs: dest = os.path.join(curdir,dr) class_dir[dr] = dest if not os.path.exists(dest): os.mkdir(dest) data = zip(labels,images,data['Usage']) for d in data: destdir = os.path.join(class_dir[d[-1]],str(int(d[0]))) if not os.path.exists(destdir): os.mkdir(destdir) img = d[1] filepath = unique_name(destdir,d[-1]) print('[^_^] Write image to %s' % filepath) if not filepath: continue sig = cv2.imwrite(filepath,img) if not sig: print('Error') exit(-1) def unique_name(pardir,prefix,suffix='jpg'): filename = '{0}_{1}.{2}'.format(prefix,random.randint(1,10**8),suffix) filepath = os.path.join(pardir,filename) if not os.path.exists(filepath): return filepath unique_name(pardir,prefix,suffix) if __name__ == '__main__': filename = 'fer2013.csv' filename = os.path.join(curdir,filename) gen_record(filename,1) # ##################### test # tmp = unique_name('./Training','Training') # print(tmp)
Тренинг собственнойц нейросети может занять очень много времени ( недели) -= зависит от вашего компа.